UW XLL WI2025

Reinforcement Learning
of Polynomaials

Hansel Lee, Kyle
Zhang, Junbo
Huang

Introduction and Goal

e Arithmetic circuits compute a
polynomial using binary
operations +and * where +is
addition and *is multiplication.

e Usereinforcement learning to
generate efficient arithmetic
circuits representing
polynomials with minimal
complexity.

e (anthe successes of
AlphaZero be replicated for
this task?

Arithmetic Circuits Example

For a polynomial: 2 + 22y + v?

Efficiently computed:
(x) add gate (y) — A
(A) multiply gate (A)

01 (l‘*
\ » - e
— + —L ~ 0

if 2
o m
of 1_‘14

Inefficiently computed:
(x) multiply gate (x) — A
(y) multiply gate (y) — B
(x) multiply gate(y)— C
(x) (y)—D
(

multiply gate (y)
A)add gate (C) add gate (D) add gate (B)

Approaches

Frozen Lake
Environment (Breadth
First Search)

There is a reinforcement learning
benchmark in OpenAl Gymnasium called
FronzenlLake Environment for
navigating from start to goal.

We tried to apply search algorithms
from FrozenLake to polynomial
simplification, finding the shortest
transformation path. Generating random
polynomials using SymPy and apply
search algorithms for simplification.

NOoO VA WN R

o o

NRNNRNRNRNNRNNRSRRRBR B |3 5 |3 |3
0NN A WNRP,O®OLONON S WN R ®

29

Wow W wwwww
Non s WN R ®

H A B W W
N = ® ©

~
w

IS

45

B
o

import sympy as sp
import random

def generate_random_polynomial(variables=['x", 'y', ‘z'], degree=5, terms=10)

vars = [sp.Symbol(v) for v in variables]

polynomial = sum(random.randint(1, 5) * sp.Mul(*random.choices(vars, k=random.randint(1, degree)))
for _ in range(terms))

return sp.expand(polynomial)

random_poly = generate_random_polynomial()
print('randomly generated polynomial:')
print(random_poly)

def simplify_polynomial(poly):

return sp.factor(poly)

simplified_poly = simplify_polynomial(random_poly)
print(‘simplify:")
print(simplified_poly)

from collections import deque

def find_shortest_simplification_path(start_poly):

queue = deque([(start_poly, [1)])
visited = set()

while queue:
poly, path = queue.popleft()

if poly == simplify_polynomial(start_poly):
return path + [poly]

next_states = [sp.factor(poly), sp.expand(poly)]
for next_poly in next_states:
if next_poly not in visited:
visited.add(next_poly)

queue.append((next_poly, path + [next_poly]))

return None

path = find_shortest_simplification_path(random_poly)
print("simplified path")
for step in path:

1

print(”g", step)

Limitations of Frozen Lake

e Thisapproach works well for
polynomials that can be directly
factored into simple components.

e Forpolynomials that cannot be easily
factored, the method struggles to .
find an efficient simplification path. @ Gy m ﬂ a S | U m

e Forexample, it can directly factorize
X2 + 4*x + 3 into (x + 1\x + 3), but
cannot deal with more complex case
like X2 + 4*x + 4.

Using AlphaZero

e Using Monte Carlo Tree Search
(MCTS) to explore action space of
creating arithmetic circuits.

e Trainaneural networktolearna
policy from MCTS, enabling
efficient polynomial computation.

e Direct MCTS computationis slow, .
so we develop a model for efficient
predictions. ins Ml AZdraws | AZloses [l AZwhite) AZblack @

AlphaZero vs. Stockfish AlphaZero vs. EImo AlphaZero vs. AGO

W:29.8% D:70.6% L:0.4% W:84.2% D:2.2% L:13.6% W:86.9% L:31.1%

W:2.0% D:97.2% L:0.8% 10.8% L:1.8% W:53.7%

Obstacles in AlphaZero

e Converting AlphaZero algorithm to
a single player game
o ldentifying win/lose
conditions
e Representingthe circuitasa

AlphaZero vs. Stockfish AlphaZero vs. EImo AlphaZero vs. AGO

fixed-Size tensor W:29.8% D:70.6% L:0.4% W:84.2% D:2.2% L:13.6% W:86.9% L:31.1%
. . O
o Ouractionspaceis o

W:2.0% D:97.2% L:0.8% 10.0% L:1.8%

continuous due to the ability
to add constants

AZ wins AZ draws AZ loses AZ white O AZ black .

Next Steps

e [ryotherreinforcement
learning algorithms, such as
Proximal Policy Optimization
(PPO)

e (enerate a dataset with
efficiently computable
polynomials

e Experiment with different
state and action
representations.

o Learned embeddings?
o Textual representation?

Questions”?

Hansel Lee, Kyle Zhang, Junbo Huang (UW XLL WI2025)

