
Reinforcement Learning
of Polynomials

UW XLL WI 2025

Hansel Lee, Kyle
Zhang, Junbo

Huang
Mentors: Jarod Alper, William Dudarov

● Arithmetic circuits compute a
polynomial using binary
operations + and * where + is
addition and * is multiplication.

● Use reinforcement learning to
generate efficient arithmetic
circuits representing
polynomials with minimal
complexity.

● Can the successes of
AlphaZero be replicated for
this task?

Introduction and Goal
2

Arithmetic Circuits Example

Efficiently computed:
(x) add gate (y) → A
(A) multiply gate (A)

3

For a polynomial:

Inefficiently computed:
(x) multiply gate (x) → A
(y) multiply gate (y) → B
(x) multiply gate (y) → C
(x) multiply gate (y) → D
(A) add gate (C) add gate (D) add gate (B)

Approaches

There is a reinforcement learning
benchmark in OpenAI Gymnasium called
FronzenLake Environment for
navigating from start to goal.

We tried to apply search algorithms
from FrozenLake to polynomial
simplification, finding the shortest
transformation path. Generating random
polynomials using SymPy and apply
search algorithms for simplification.

Frozen Lake
Environment (Breadth
First Search)

Limitations of Frozen Lake

● This approach works well for
polynomials that can be directly
factored into simple components.

● For polynomials that cannot be easily
factored, the method struggles to
find an efficient simplification path.

● For example, it can directly factorize
x^2 + 4*x + 3 into (x + 1)(x + 3), but
cannot deal with more complex case
like x^2 + 4*x + 4.

6

Using AlphaZero

● Using Monte Carlo Tree Search
(MCTS) to explore action space of
creating arithmetic circuits.

● Train a neural network to learn a
policy from MCTS, enabling
efficient polynomial computation.

● Direct MCTS computation is slow,
so we develop a model for efficient
predictions.

7

Obstacles in AlphaZero
8

● Converting AlphaZero algorithm to
a single player game
○ Identifying win/lose

conditions
● Representing the circuit as a

fixed-size tensor
○ Our action space is

continuous due to the ability
to add constants

● Try other reinforcement
learning algorithms, such as
Proximal Policy Optimization
(PPO)

● Generate a dataset with
efficiently computable
polynomials

● Experiment with different
state and action
representations.
○ Learned embeddings?
○ Textual representation?

Next Steps
9

Questions?

Hansel Lee, Kyle Zhang, Junbo Huang (UW XLL WI 2025)

